Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Tuning the surface charge properties of epitaxial InN nanowires.

Identifieur interne : 000960 ( Main/Exploration ); précédent : 000959; suivant : 000961

Tuning the surface charge properties of epitaxial InN nanowires.

Auteurs : RBID : pubmed:22545811

English descriptors

Abstract

We have investigated the correlated surface electronic and optical properties of [0001]-oriented epitaxial InN nanowires grown directly on silicon. By dramatically improving the epitaxial growth process, we have achieved, for the first time, intrinsic InN both within the bulk and at nonpolar InN surfaces. The near-surface Fermi-level was measured to be ∼0.55 eV above the valence band maximum for undoped InN nanowires, suggesting the absence of surface electron accumulation and Fermi-level pinning. This result is in direct contrast to the problematic degenerate two-dimensional electron gas universally observed on grown surfaces of n-type degenerate InN. We have further demonstrated that the surface charge properties of InN nanowires, including the formation of two-dimensional electron gas and the optical emission characteristics can be precisely tuned through controlled n-type doping. At relatively high doping levels in this study, the near-surface Fermi-level was found to be pinned at ∼0.95-1.3 eV above the valence band maximum. Through these trends, well captured by the effective mass and ab initio materials modeling, we have unambiguously identified the definitive role of surface doping in tuning the surface charge properties of InN.

DOI: 10.1021/nl300476d
PubMed: 22545811

Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Tuning the surface charge properties of epitaxial InN nanowires.</title>
<author>
<name sortKey="Zhao, S" uniqKey="Zhao S">S Zhao</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Electrical and Computer Engineering, McGill University, 3480 University Street, Montreal, QC, H3A 2A7, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Electrical and Computer Engineering, McGill University, 3480 University Street, Montreal, QC, H3A 2A7</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Fathololoumi, S" uniqKey="Fathololoumi S">S Fathololoumi</name>
</author>
<author>
<name sortKey="Bevan, K H" uniqKey="Bevan K">K H Bevan</name>
</author>
<author>
<name sortKey="Liu, D P" uniqKey="Liu D">D P Liu</name>
</author>
<author>
<name sortKey="Kibria, M G" uniqKey="Kibria M">M G Kibria</name>
</author>
<author>
<name sortKey="Li, Q" uniqKey="Li Q">Q Li</name>
</author>
<author>
<name sortKey="Wang, G T" uniqKey="Wang G">G T Wang</name>
</author>
<author>
<name sortKey="Guo, Hong" uniqKey="Guo H">Hong Guo</name>
</author>
<author>
<name sortKey="Mi, Z" uniqKey="Mi Z">Z Mi</name>
</author>
</titleStmt>
<publicationStmt>
<date when="2012">2012</date>
<idno type="doi">10.1021/nl300476d</idno>
<idno type="RBID">pubmed:22545811</idno>
<idno type="pmid">22545811</idno>
<idno type="wicri:Area/Main/Corpus">000D36</idno>
<idno type="wicri:Area/Main/Curation">000D36</idno>
<idno type="wicri:Area/Main/Exploration">000960</idno>
</publicationStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Crystallization (methods)</term>
<term>Indium (chemistry)</term>
<term>Macromolecular Substances (chemistry)</term>
<term>Materials Testing</term>
<term>Molecular Conformation</term>
<term>Nanostructures (chemistry)</term>
<term>Nanostructures (ultrastructure)</term>
<term>Particle Size</term>
<term>Static Electricity</term>
<term>Surface Properties</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Indium</term>
<term>Macromolecular Substances</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>Nanostructures</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Crystallization</term>
</keywords>
<keywords scheme="MESH" qualifier="ultrastructure" xml:lang="en">
<term>Nanostructures</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Materials Testing</term>
<term>Molecular Conformation</term>
<term>Particle Size</term>
<term>Static Electricity</term>
<term>Surface Properties</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">We have investigated the correlated surface electronic and optical properties of [0001]-oriented epitaxial InN nanowires grown directly on silicon. By dramatically improving the epitaxial growth process, we have achieved, for the first time, intrinsic InN both within the bulk and at nonpolar InN surfaces. The near-surface Fermi-level was measured to be ∼0.55 eV above the valence band maximum for undoped InN nanowires, suggesting the absence of surface electron accumulation and Fermi-level pinning. This result is in direct contrast to the problematic degenerate two-dimensional electron gas universally observed on grown surfaces of n-type degenerate InN. We have further demonstrated that the surface charge properties of InN nanowires, including the formation of two-dimensional electron gas and the optical emission characteristics can be precisely tuned through controlled n-type doping. At relatively high doping levels in this study, the near-surface Fermi-level was found to be pinned at ∼0.95-1.3 eV above the valence band maximum. Through these trends, well captured by the effective mass and ab initio materials modeling, we have unambiguously identified the definitive role of surface doping in tuning the surface charge properties of InN.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Owner="NLM" Status="MEDLINE">
<PMID Version="1">22545811</PMID>
<DateCreated>
<Year>2012</Year>
<Month>06</Month>
<Day>13</Day>
</DateCreated>
<DateCompleted>
<Year>2012</Year>
<Month>10</Month>
<Day>15</Day>
</DateCompleted>
<DateRevised>
<Year>2013</Year>
<Month>11</Month>
<Day>21</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1530-6992</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>12</Volume>
<Issue>6</Issue>
<PubDate>
<Year>2012</Year>
<Month>Jun</Month>
<Day>13</Day>
</PubDate>
</JournalIssue>
<Title>Nano letters</Title>
<ISOAbbreviation>Nano Lett.</ISOAbbreviation>
</Journal>
<ArticleTitle>Tuning the surface charge properties of epitaxial InN nanowires.</ArticleTitle>
<Pagination>
<MedlinePgn>2877-82</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1021/nl300476d</ELocationID>
<Abstract>
<AbstractText>We have investigated the correlated surface electronic and optical properties of [0001]-oriented epitaxial InN nanowires grown directly on silicon. By dramatically improving the epitaxial growth process, we have achieved, for the first time, intrinsic InN both within the bulk and at nonpolar InN surfaces. The near-surface Fermi-level was measured to be ∼0.55 eV above the valence band maximum for undoped InN nanowires, suggesting the absence of surface electron accumulation and Fermi-level pinning. This result is in direct contrast to the problematic degenerate two-dimensional electron gas universally observed on grown surfaces of n-type degenerate InN. We have further demonstrated that the surface charge properties of InN nanowires, including the formation of two-dimensional electron gas and the optical emission characteristics can be precisely tuned through controlled n-type doping. At relatively high doping levels in this study, the near-surface Fermi-level was found to be pinned at ∼0.95-1.3 eV above the valence band maximum. Through these trends, well captured by the effective mass and ab initio materials modeling, we have unambiguously identified the definitive role of surface doping in tuning the surface charge properties of InN.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Zhao</LastName>
<ForeName>S</ForeName>
<Initials>S</Initials>
<Affiliation>Department of Electrical and Computer Engineering, McGill University, 3480 University Street, Montreal, QC, H3A 2A7, Canada.</Affiliation>
</Author>
<Author ValidYN="Y">
<LastName>Fathololoumi</LastName>
<ForeName>S</ForeName>
<Initials>S</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Bevan</LastName>
<ForeName>K H</ForeName>
<Initials>KH</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Liu</LastName>
<ForeName>D P</ForeName>
<Initials>DP</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Kibria</LastName>
<ForeName>M G</ForeName>
<Initials>MG</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Li</LastName>
<ForeName>Q</ForeName>
<Initials>Q</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>G T</ForeName>
<Initials>GT</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Guo</LastName>
<ForeName>Hong</ForeName>
<Initials>H</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Mi</LastName>
<ForeName>Z</ForeName>
<Initials>Z</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType>Journal Article</PublicationType>
<PublicationType>Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType>Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2012</Year>
<Month>05</Month>
<Day>14</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Nano Lett</MedlineTA>
<NlmUniqueID>101088070</NlmUniqueID>
<ISSNLinking>1530-6984</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance>Macromolecular Substances</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance>indium nitride</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>045A6V3VFX</RegistryNumber>
<NameOfSubstance>Indium</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName MajorTopicYN="N">Crystallization</DescriptorName>
<QualifierName MajorTopicYN="Y">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N">Indium</DescriptorName>
<QualifierName MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N">Macromolecular Substances</DescriptorName>
<QualifierName MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N">Materials Testing</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N">Molecular Conformation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N">Nanostructures</DescriptorName>
<QualifierName MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName MajorTopicYN="Y">ultrastructure</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N">Particle Size</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="Y">Static Electricity</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N">Surface Properties</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="aheadofprint">
<Year>2012</Year>
<Month>5</Month>
<Day>14</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2012</Year>
<Month>5</Month>
<Day>2</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2012</Year>
<Month>5</Month>
<Day>2</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2012</Year>
<Month>10</Month>
<Day>16</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="doi">10.1021/nl300476d</ArticleId>
<ArticleId IdType="pubmed">22545811</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV2/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000960 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000960 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV2
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:22545811
   |texte=   Tuning the surface charge properties of epitaxial InN nanowires.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:22545811" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a IndiumV2 

Wicri

This area was generated with Dilib version V0.5.76.
Data generation: Tue May 20 07:24:43 2014. Site generation: Thu Mar 7 11:12:53 2024